Technical
Bill of other materials:
Electronics to control the machine:
1 x Arduino UNO shield with USB cable
1 x Engraver CNC shield V3.0 board (Also, KITs involving both shields are available)
9 x 2pin header micro jumpers (could be sold together with CNC shield, check)
3 x A4988 Stepper Motor Driver boards (with heat sinks, or you can use a cooler like I did)
2 x NEMA 17 stepper motors – height 40 mm could be perfect (mine are recycled from an old 3D printer being 48 mm tall and working ok)
1 x 12.0 V 2A power supply (mine is recycled, 12.0 V 8.0 A)
1 x Power Jack Socket 2.1mm PCB mount
1 x 300 mm Single core mounting wire 1.4mm (recommended to have 2x 100 mm black for ground and 1x 100 mm red wire for power)
1 x 28BYJ 12V Gear stepper motor for Z-axis
1 x 850 mm Cable Extender for 28BYJ Gear stepper motor
1 x Techflex Flexo PET sleeving for 28BYJ Gear stepper motor cables
1 x Heat-shrinkable tube 140 mm to cut and joint some cables
1 x 5V Cooling Fan 30x30mm
2x pieces of jumper wires with female pin connectors for cooling fan
Rods and fasteners to build X-Y-Z-axes:
4 x 8 mm smooth diameter rods by pairs in a length you want for X- and Y-axes
(I used 2x 340 mm-long for X and 2x 455 mm -long Y (recycled from printers and scanners), which gave me about 300(X) x 240(Y) x 23(Z) mm of the workspace.)
2 x 10 mm (3/8") threaded rods, in the same length than your X-axis + 2 cm (mine are 360 mm)
2 x 6 mm smooth diameter rods 60 mm for Z-axis (mine are recycled from an old scanner)
10x F623ZZ Double Shielded Flanged Ball Bearings for X- and Y-axes
2 x 16 teeth, 5 mm Bore Timing Pulleys for GT2 belt
8 x LM8UU Linear Ball Bearings for smooth diameter rods
1 x 200 cm 6mm GT2 Timing Belt Open
(if you change the length of axels, you will get the length of the belt by calculating [(X-axis cm + Y-axis cm) x2] + at least 10 cm extra for tightening)
I recommend making X-axis (including 2x 8 mm smooth diameter rods + 2x 10 mm threaded rods) longer than y-axis for making the machine more stable. I had only 360 mm recycled threaded rods, but I wanted to make the drawing area bigger so, my Y-axis is longer than X-axis, which caused that I had to make extra legs to make the machine stable.
Bolts, nuts, and washers
3 x M3 6mm screws (for z-axis 28BYJ gear stepper motor + pen holder)
9 x M3 8 mm screws (for NEMA 17 stepper motors + pen holder)
11 x M3 20 mm screws (for x- and y-axis ends)
4 x M3 30 mm screws (for x-y-configuration)
4 x M3 40 mm screws (for x-y-configuration / cable holder)
19 x M3 nuts (for x- and y-axis ends and x-y-configuration)
5 x M3 washers (for x-y-configuration + z-axis belt holder)
1 x M5 screw (for the pen on the Z-axis)
4 x M10 serrated nuts (for threaded rods)
4 x M10 nuts (for threaded rods)
4 x M10 washers (for threaded rods)
3D printed parts:
Since 3D printing takes some time, it is a good idea to start by printing the parts. I adapted some of the misan’s (https://www.youmagine.com/designs/4xidraw) and cyul’s (https://www.thingiverse.com/thing:1514145) parts to be 3D printed, but some of them I developed further, and also created and added some new parts. I had difficulties with the OBJ -format so, I opened the files in 3D builder and saved them as STL -format. All the original parts of cyul’s can be found and edited here.
From the cyul’s parts, I developed further both Y_Ends, to make them stronger and the y-axis more stable.
Developed_Y_End_1.stl (individual)
Developed_Y_End_2.stl (connected to z-axel)
To make the machine more stable, I made legs for x-axel:
LEG1-for-Arduino+Cooler.stl
LEG2-for-Stepper-motor.stl
I added also a Cable Holder for stepper motor cable going above the stage, and a Cable Keeper put inside the LEG for Arduino:
Cable-Holder-for-stage.stl
Cable-Keeper-for-LEG.stl
I will still develop Z-stage and the pen holder further at some point later on.