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Abstract

A specially constructed 3D printable clockwork’s escapement is optimized by mathemat-

ical means. The result is evaluated by a series of measurements.
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1 Project history

At first glance, the goal of this project may seem very abstract, which is why I would first like

to explain how my motivation developed in this direction.

The first suggestion I received for constructing my own mechanical clockwork came from physics

class, in which the subject of “oscillations” was dealt with. Mechanical oscillating systems, such

as e. g. a piece of mass on a spiral spring, fascinated me so much with their periodic energy

conversions that I tried to construct particularly simple ones for 3D printing, and after a few

days I found one oscillating in my hands. However, I deemed that something was still missing

and slowly I developed my ambition to construct a mechanism that – once wound up – would

automatically stimulate the oscillator. And that would be a device that would have the exact

properties of a mechanical clockwork.

Ultimately, a small collection of mechanical watches that I own inspired me to start designing

the movement. Following that impulse, I had the intention not to simply adopt the mechanical

principle of existing escapements, but to come up with my own, which I desired to be particularly

simple and minimalistic. It took a few weeks filled with designing, printing, and testing proto-

types, and I got my hands on first a satisfyingly oscillating balance wheel, then a gear-driven

escapement, which seemed particularly simple to me at the time, and finally I could wind up

a completely self-constructed mechanical clockwork depicted in Figure 1 for the first time and

it actually ran almost flawlessly. So this seems to be the happy ending of my story about the

construction of a mechanical clockwork – one might think.

Figure 1: The fully assembled clockwork

In fact, I am still concerned with one detail in my construction, which probably manifests a

geometrical problem concerning the escapement of the movement and its profile wheel. As an

introduction, I would like to say a few words about the construction and how it works in the

next chapter.
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2 The clockwork and its mechanical principle

drive gear
escape wheelpin

profile wheel

Figure 2: Construction drawing for the most important components of the clockwork

The clockwork can be divided into three main units, which will be described individually in the

following subchapters. Figure 2 gives an overview of their mechanical connection to clarify the

individual components’ interrelations.

2.1 Energy reservoir

winding stem barrel core
Figure 3: Structure of a barrel: The

component with the winding stem is

slightly raised for improved visibility.

The hexagonal inner profile which is

embedded into the bottom of the barrel

core is occluded. In the tensioned state,

the spring force acts between this bar-

rel core and the winding stem by means

of the barrel’s outer part. Both hexag-

onal profiles fit into each other, so that

several barrels can be stacked.

In order to excite oscillations against the friction within the system, the clockwork must have

a simple energy source. In this case, it consists of a combination of two spiral springs that are

tensioned when they are wound. To be more precise, there are two barrels connected in series,

the structure of which is shown in Figure 3. One of the spring barrels is fitted with a pawl so that

the springs do not relax again immediately after being wound up. This way, the entire spring

force acts on the rest of the movement mechanics when the watch is tensioned. The spring of the

second barrel is now connected to a large gear wheel, the drive wheel, so that a certain torque is

applied to it when it is cocked. In a watch that has clock hands, this gear would also drive their

mechanism, but for a pure clockwork movement it is sufficient if it just powers the escapement,

which is connected to the drive wheel by a small gear. The escapement’s functional description

should come last, as it makes a mechanical connection between the mainspring and the balance

wheel, which is the main component of the problem this paper deals with.
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2.2 Balance wheel

balance wheel balance shaft

profile wheel

Figure 4: Structure of the balance and
its connection to the profile wheel: In
order to achieve the greatest possible
moment of inertia on the balance wheel
with as little material as possible, the
mass is distributed as far away from the
axis of rotation as possible. One side of
the hairspring is connected to the clock-
work case on the outside and the other
side to the balance shaft and thus also
to the profile wheel on the inside.

In a movement, the balance represents a mechanically oscillating system, specifically a torsional
oscillator consisting of a rotatably mounted piece of mass, the balance wheel, and a spiral spring
attached to it. The rest of the clockwork mechanism is connected via the balance shaft. Figure 4
shows the balance and its direct connection to the profile wheel.
During the oscillation process, the potential energy of the spiral spring and the kinetic energy of
the mass, which is connected to its moment of inertia, are periodically converted into one another.
One can therefore speak of two alternating phases, which together make up an oscillation cycle.
Physical considerations can be used to show that the oscillation cycle has a constant period
duration and thus oscillation frequency under ideal circumstances, in which external forces,
unfortunately also including the omnipresent friction[1], are absent. This property of almost
constant frequency even under realistic circumstances makes the spring-mass system a good
approach for a device whose purpose is to measure or keep time.

2.3 Escapement

In mechanical watch movements, escapements help to keep the rotation rate and thus the mecha-
nism’s effective rotation speed constant, despite varying torque. This is particularly necessary for
watches that are driven by spring force, because their drive springs exert an steadily decreasing
torque over time as they relax.
In this paper, a special escapement is to be examined, which – as it turned out after extended
research – is also known as the “Tic Tac escapement”[2]. Essentially, it consists of two com-
ponents. The first is an evenly studded escape wheel, ultimately driven by the mainsprings.
The speed-regulating property of the escapement comes about through the interaction of the
escapement wheel with the second component, a wheel that has a special profile towards the
escapement wheel on one hand and is on the other hand directly connected to the balance via its
balance shaft. This profile wheel is traversed by the escapement wheel’s pins, which traverse its
profile individually and thus mechanically connect the mainsprings to the balance wheel. The
special profile determines the force transmission factor1 as a function of the wheel’s rotation
angles. If certain conditions are met, the escapement goes through a cycle of four phases, which
is repeated with each pin that traverses the profile. In the first phase (Figure 5a) the balance
wheel is accelerated in one direction of rotation by the escapement wheel; this is when it is in a
driving state. Subsequently, in the second phase (Figure 5b), the escapement wheel is blocked
until the balance wheel has reached its resting position after reaching the maximum deflection
at which the direction of rotation reverses. Meanwhile, the escapement wheel is in a blocked
state. The last two phases (Figure 5c and 5d) are similar to the former ones, with the only

1That is – admittedly – a somewhat vague expression. In terms of the following mathematical formulation, it
reflects the ratio of torques acting on the escapement wheel and profile wheel.
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(a) First propulsion phase (b) First blocking phase (c) Second propulsion
phase

(d) Second blocking phase

Figure 5: Phases of an oscillation cycle: The escapement wheel turns clockwise. Arrows indicate
the direction of the profile wheel’s rotation, with the white arrow following the black arrow where
applicable.

difference being that the balance wheel is accelerated in the opposite direction of rotation. Since
the escapement wheel is equipped with 12 pins, it rotates by an angle of · = π

6 in radians per
cycle.
Ideally the reader now has a rough understanding of the presented construction’s functional
principle, so the next sections can continue dealing with the main problem and the associated
mathematical considerations.

3 Main problem

As can be seen from the preceding, the profile of the profile wheel is of crucial importance for
this type of escapement. It should therefore be examined which properties an ideal function of
the force transmission factor should have as a function of the angles of rotation2 and by which
means the curve of the special profile can be calculated from this function.

3.1 Profile requirements

Before proceeding to the actual goal of calculating the profile curve, a few considerations should
be made in preparation to acknowledge which properties of the profile are desirable.
An ideal movement is as stable as possible, i. e. it has a very regular rate and a small beat error.
This can only be achieved by reducing distrubances of the balance wheel’s oscillating movements
as low as possible, which implies minimizing the duration of energy transfer to the balance wheel
and keeping energy transfers near its zero crossing.[3]
In addition, it would be desirable for the clockwork to run as long as possible with one winding
operation. For this purpose, the friction losses should be kept low and the escapement should
be able to work with the widest possible range of torques.

2The angles of rotation can also be calculated in a trivial way from the balance wheel’s oscillation phase.
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4 Various approaches and their results

In order to find the profile curve that satisfies my needs, I considered various approaches and
pursued them with more or less success. Before I tackled this problem with mathematical meth-
ods, I tried to find a working curve by trial and error to prove the concept of working, printed
movement. I set up the first prototypes of the escapement using Bézier curves in FreeCAD[4],
my CAD program of choice[5, p. 37, 6, pp. 6–7]. It wasn’t until later that I was willing to give
this much thought to optimize the profile curve.

4.1 Approach via isogonal trajectories in polar coordinates

Following success with the rather empirical approach, the next challenge is a mathematically
based construction, i. e. the profile curve should ideally be calculated unambiguously from com-
prehensible conditions or at least according to well-defined parameters.
In order to formalize the constellation in which the escapement wheels are located, I first thought
it useful to consider the curves and points of the system from a polar coordinate system, the
pole of which should be the profile wheel’s axis of rotation. Within this setting, a profile curve
could be represented as a function of the radius depending on the angle r(φ).
Assuming the escape wheel was not supposed to transmit any force to the profile wheel, then
the profile curve would match the trajectory of the escape wheel. The key idea was to calculate
an isogonal trajectory for this “zero curve”, i. e. profile curve with a force transfer factor of zero
at every point. This should then have the property of a profile curve in which the trajectory of
the escapement wheel’s pins always describe the same angle to it. If this is indeed the case, one
could introduce another function with which these same angles can be modulated as a function
of the wheels’ rotation angles. This would essentially achieve the goal of calculating the profile
curve according to well-defined parameters.

d
(0, 0)

rH

φ

d · c
os
(φ
)

d · sin(φ
)

∓
√ r

2
H
− d

2 · si
n(
φ)
2

Figure 6: geometry of a shifted circle in polar coordinates

The function equation of the zero curve can be found relatively easily after some geometrical
considerations shown in Figure 6:

r0(φ) = d cos(φ)∓
√

r2H − d2 sin(φ)2 (1)

where rH is the radius of the escapement wheel and d the center distance between itself and the
profile wheel. It should be noted at this point that the positive branch of r0 is chosen as for the
special case d = rH, the negative one always describes the pole i. e. it is zero3, i. e. the entire
domain of r0 is covered by the positive branch. Figure 7 shows the null curve r0 with parameters
set corresponding to my construction.
In order to calculate the isogonal trajectory to r0 with an angle ³, one would – at least in a

3The negative branch of r0(ϕ) then becomes rH · (cos(ϕ) − cos(ϕ)) = 0, while the positive branch becomes
rH · (cos(ϕ) + cos(ϕ)) = 2rH cos(ϕ).
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0 2 4 6 8
Figure 7: The zero curve given in Equation 1
is chosen with d = rH = 30, since the pro-
file wheel’s center is 30mm away from that
of the escapement wheel and that also is the
radius of the circle on which the pin’s cen-
ters move. The function is shown for φ ∈[
π−ζ/2

2 ; 2Ã − π−ζ/2
2

[

, so its curve does not go

beyond the profile wheel.

Cartesian coordinate system – directly use the addition theorem for the tangent4 to enlarge the
slopes at each point by that angle. I’m not sure if it is possible do the same with polar functions,
but I tried it anyway, hoping that differentiation and integration in the polar coordinate system
would have the properties I expected them to have.
For the further procedure one must first calculate the slope angles as a function of φ, which is
the arctangent of the derivative:

´(φ) = arctan(r′0) = arctan



d cos(φ)− d2 cos(φ) sin(φ)
√

r2H − d2 cos(φ)2



 (2)

Now ´ and the constant angle ³ are substituted into the addition theorem followed by integration,
whose result should be a function that has the given angle difference to the zero curve at every
point:

r(φ) =

∫ ϕ

0

tan(³) + r′0(È)

1− tan(³) · r′0(È)
dÈ (3)

It turns out that in the rarest cases an antiderivative for isogonal trajectories can be found
analytically5, which is why I used the open-source mathematics program wxMaxima[9] to nu-
merically calculate the resulting profile curve and by means of a little trick6it is possible to make
it plot the resulting function.
I had curves calculated for different angles, but the plot shown in Figure 8 reveals at first glance
that this is not the curve I’m looking for, which is why I didn’t pursue further thoughts on
this approach for the time being. Presumably the failure is due to the fact that my dubious
assumption that my approach using isogonal trajectories make sense to polar functions is wrong.
For the results of this approach, I will therefore save myself from printing a corresponding profile
wheel and testing it on the movement due to theoretically justified concerns.

4tan(α+ β) = tan(α)+tan(β)
1−tan(α) tan(β)

[7]
5In this case I first tried it by hand, then with GeoGebra[8] and wxMaxima, both failing, sometimes even with

program crashes.
6For some reason wxMaxima does not allow plotting numerically integrated functions directly. But you can

wrap the operation of numerical integration in a lambda expression that passes the values to the plotter. It may
sound absurd, but it actually works.
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0 10 20 30

Figure 8: Zero curve (grey) and its numer-
ically calculated isogonal trajectory (black)
with an angle difference of −10◦ in the po-
lar coordinate system: It probably does not
deliver the desired result, because the tan-
gents of the two curves do not always have
the same angular difference at intersections
with the same rays originating from the pole.
Especially the points near the pole are em-
phasized for clarification.

4.2 Via torque ratios using geometry and analysis

When I had a lot of free time again, I tried the problem again. In this approach, the wheel
constellation is first formalized as a composed rotation in a Cartesian coordinate system, which
is attached the profile wheel, as depicted in Figure 9. It makes sense that the origin of the
coordinate system is also the center of rotation of the first rotation, which is described by the
angle ³ by which the mechanism is inclined around the profile wheel. The mechanism inclined
in this way contains the escapement wheel, whose angle of rotation is denoted by ´.

x

y

d

rH³

´

φrP

d · sin(³)

d · cos(³)

−rH · sin(³+ ´)

−rH · cos(³+ ´)

³+
´

Figure 9: Angles and distances of the new view: The dashed line rP corresponds to the profile’s
radius at the point of contact between the profile and a pin on the escapement wheel. The point
of contact depends on the angles ³ and ´.

Now in this coordinate system, a parametric curve describing a pin’s trajectory when viewed
from the profile wheel and depending on the rotation angle of the escapement wheel is defined:

p⃗(´) =

(
d cos(³(´))− rH cos(³(´) + ´)
d sin(³(´))− rH sin(³(´) + ´)

)

: ´ ∈
[

−∆´

2
;
∆´

2

[

(4)

d then is the distance between the escapement wheel’s and the profile wheel’s center, rH the
escapement wheel’s radius, ³(´) is a function that represents the reverse7 of the profile wheel’s

7A positive direction of the mechanism’s rotation inside coordinate system is a negative direction of rotation
of the coordinate system and thus of the profile wheel.
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rotation angle and ∆´ = · stands for the angle between two pins on the escapement wheel,
which means that the view applies for exactly one oscillation cycle, i. e. two beats.

x

d

rH

³

´

rP

g

φP

φH

Figure 10: Force decomposition at the curve tangent: The tangential force from the escapement
wheel acting counter-clockwise on the profile wheel is distributed at the profile tangent g, so that
it is forced to turn in the same direction, i. e. ³ decreases.

This form proves to be an extremely useful tool for setting other parameters of the curve, such
as the force transmission factor. To do this, it is necessary to determine the angle between the
profile’s tangent shown in Figure 10 and the segments rH and rP connecting the point of contact
with their centers of rotation, respectively, at the point of contact between pin and profile wheel.
These angles φH and φP are ultimately required for a force decomposition such that the ratio of
the escapement wheel’s and profile wheel’s torques for a given function ³(´) can be calculated
or an ³ with given torque ratios can be found. The slope of the tangent at a certain angle
of rotation ´ is the quotient of x- and y-component’s derivatives, by means of the intelligent
arctangent8:

p′y(´) = d · ³′(´) · cos(³(´))− rH · (³′(´) + 1) · cos(³(´) + ´) (5)

p′x(´) = −d · ³′(´) · sin(³(´)) + rH · (³′(´) + 1) · sin(³(´) + ´) (6)

¶T(´) = arctan2

(
p′y(´)

p′x(´)

)

= arctan2

(
d · ³′(´) · cos(³(´))− rH · (³′(´) + 1) · cos(³(´) + ´)

−d · ³′(´) · sin(³(´)) + rH · (³′(´) + 1) · sin(³(´) + ´)

)

(7)

It should be noted that the angle is measured relative to the x-axis of the coordinate system.
The line rH connected to the escapement wheel’s center of rotation has an angle that can be
found directly using Figure 9: ¶H = ³ + ´, so that the angle between rH and the tangent g is
given by:

φH = ¶T − ¶H = ¶T − ³− ´ (8)

For the other line segment rP connected to the profile wheel, the law of sines leads to the angle
between the segment and g if its length is known. This is given by the Pythagorean theorem:

rP =
√

r2H sin(´)2 + (d− rH cos(´))2 (9)

8The intelligent arctangent is characterized by the fact that it finds the correct angle from the numerator and
denominator of the “fraction” (these are then the arguments), which is not just an element of ]−π;π[. An example:

arctan2
(

1
−1

)

= 3π/4, while arctan(−1) = −π/4.
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rHFH

g

φH

φH

FN

Figure 11: Force distribution on the straight line g, which is tangent to the profile curve, on the
escapement wheel

And finally, the law of sines can be used as the unknown angle φP determined by the angle
φ = φP + φH opposing d:

sin(φP + φH)

d
=

sin(´)

rP
(10)

φP = arcsin

(
d

rP
sin(´)

)

− φH (11)

= arcsin




d sin(´)

√

r2H sin(´)2 + (d− rH cos(´))2



− ¶T + ³+ ´ (12)

From the angles that are now known, one can finally calculate the force transmission factor,
from which the ratio of the torques follows directly. In this escapement, the force FH acting
tangential to the track, i. e. acting perpendicular to the radius of the escapement wheel, is first
broken down into a component FN that is perpendicular to the profile curve tangent and thus
parallel to its normal. Using the forces diagram in Figure 11, one can see that these two forces
fulfill the relationship

FH = FN cos(φH) (13)

, if φH = ¶T − ¶H denotes the angle between escapement wheel radius and profile curve tangent.
After this intermediate step, the sought force, i. e. the force acting tangentially to the profile
wheel’s circular path, can be determined. This decomposition is similar to the first in the
intermediate step, except that this time the force along the normal is known and the tangential
force is unknown. In other words: the same formula applies to the second decomposition, where
FN = FN, FH = FP and φH = φP, so that after substitution the following relation holds:

FP = FN cos(φP) (14)

Now two equations can be divided and the formula for the force transmission factor at given
angles arises:

FH

FP
=

cos(φH)

cos(φP)
(15)

The final step leading to the relationship of torques is to rearrange the definition according to
force and substituting:

F =
M

r
⇒

MH
rH
MP
rP

=
cos(φH)

cos(φP)
⇒ MH

MP
=
rH cos(φH)

rP cos(φP)
(16)
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Now it is only a matter of substituting both angles, which results in a function of the torque
ratio as a function of ´ and, above all, the function ³:

¸(´) =
MH

MP
=
rH
rP

· cos(¶T − ¶H)

cos
(

arcsin
(

d
rP

sin(´)
)

− ¶T + ¶H

)

∣
∣
∣
∣
∣
∣

Recursively substi-
tuting rP and all ¶;
cos(x) = cos(−x)

(17)

=
rH

√

r2H sin(´)2 + (d− rH cos(´))2

·
cos
(

arctan2
(

d·α′
·cos(α)−rH·(α′+1)·cos(α+β)

−d·α′·sin(α)+rH·(α′+1)·sin(α+β)

)

− ³− ´
)

cos

(

arctan2
(

d·α′·cos(α)−rH·(α′+1)·cos(α+β)
−d·α′·sin(α)+rH·(α′+1)·sin(α+β)

)

− arcsin

(

d sin(β)√
r2H sin(β)2+(d−rH cos(β))2

)

− ³− ´

)

(18)

As the attentive reader has certainly noticed after a few algebraic transformations in his head,
¸(´) = −³′(´) actually holds. If this relationship doesn’t seem obvious to you, please reach for
pen and paper to prove it as a little exercise.
The “little exercise” was, of course, a gross understatement for what it takes to get there; I
therefore apologize for the joke. Before it even occurred to me to test this assumption, I had
GeoGebra plot ³(´) and ¸(´), whereupon I noticed that the latter bears a suspicious similarity
to the derivative of the former: And indeed, subtracting −³′ gives zero for all ´ in the plot area!
Motivated by this remarkable property of the torque ratio function, I grabbed pen and paper
myself (first A4, then due to lack of space A3) to prove my assumption using various trigonomic
identities. Due to the fact that the last steps consist of transforming extremely long fractions,
which go beyond the space and scope of this main part, I will limit myself here to the final
result. The complete derivation in Appendix A shows that the complicated term of ¸(´) reduces
completely except for

¸(´) = −³′(´) (19)

, which confirms my initial suspicion. From this knowledge, the surprisingly trivial9 conclusion
that the momentary torque ratio at the escapement wheel’s rotation angle ´ is given exactly by
the derivative of the function −³(´), which is the profile wheel’s angle of rotation in relation to
that of the escapement wheel10, can be drawn.

4.3 Confirmation of the result using physics

The escapement presented is a form of mechanical energy transfer that obeys the law of conser-
vation of energy. So it can be assumed that all the turning work done by the escapement wheel
also appears on the profile wheel. Therefore, as is usual with many other problems in physics,
the fact that energy is neither supplied from outside the system nor escaped from it can be used
to analyze the system.
In general, energy is defined as force over distance, i. e.

E =

∫

F (s) ds (20)

In the special case of the escapement, turning work of the escapement wheel is converted into
turning work of the profile wheel. Combined with the definitions of torque M = F · r and angle
φ = s

r , this results in:

ED =

∫
M(s)

r
ds =

∫

M
(s

r

)

d
s

r
=

∫

M(φ) dφ (21)

9The same follows from more simple considerations, taking into account the conservation of energy, as will be
shown later.

10α(β) itself gives the angle of rotation of the movement to the profile wheel, so −α(β), i. e. with a negative
sign, the angle of rotation of the profile wheel to the clockwork. This matter is – as is so often the case with
mathematical models – a question of the choice of the coordinate system.
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, i. e. torque over angle of rotation.
The first thing to consider is the energy ∆EH emitted by the escapement wheel when rotating
from any starting angle Ã to the end angle ´:

∆EH =

∫ β

σ
MH(φ) dφ (22)

The energy absorbed by the profile wheel is ∆EP when it has rotated from its starting angle
−³(Ã) to the ending angle −³(´)11:

∆EP =

∫
−α(β)

−α(σ)
MP(φ) dφ (23)

This equals to – one may believe the law of conservation of energy – the energy emitted by the
escapement wheel, i. e. ∆EH = ∆EP:

∫ β

σ
MH(φ) dφ =

∫
−α(β)

−α(σ)
MP(φ) dφ

∣
∣
∣
∣

d

d´
(24)

Because this expression is an equation, the same operation can be performed on both sides
without affecting the validity of the statement. Here, deriving both sides with respect to ´
leads to the goal. Since the energy integral concerning the escapement wheel is bounded by the
function ³, the chain rule may be applied:

MH(´) = −MP(−³(´)) · ³′(´) | :MP (25)

MH

MP
= ¸(´) = −³′(´) (26)

, which confirms the result of the last approach: The instantaneous torque ratio of the escape-
ment wheel to the profile wheel at the angle of rotation ´ is given by the derivative of the angle of
rotation function −³(´). A profile curve that has a specific torque ratio at a rotation angle ´ can
now be found by integrating the torque ratio function ¸(´), which first leads to a corresponding
rotation angle function ³:

¸(´) = −³′(´) (27)

⇒ −
∫ β

0
¸(b) db = ³(´) (28)

This may be substituted into the parametric curve p defined by Equation 4 to get:

p⃗η(´) =

(

d cos(−
∫ β
0 ¸(b) db)− rH cos(´ −

∫ β
0 ¸(b) db)

d sin(−
∫ β
0 ¸(b) db)− rH sin(´ −

∫ β
0 ¸(b) db)

)

: ´ ∈
[

−∆´

2
;
∆´

2

[

(29)

With this result, the problem is actually good as solved – one just has to define a function ¸ that
meets the requirements, i. e. that i. a. has a reasonable slope near −∆β

2 and zero. However, before
the curve that was eventually calculated can be applied to a real profile wheel, one more small
detail must be taken into account, which is no less important though: Up to now, the models
describing the escapement mechanism have assumed escape wheel pins to be mathematical points.
In fact, however, it has a finitely small radius, namely one of 2mm, not taking into account
tolerances in the manufacturing process. In my case – it’s an FDM 3D printer – 0.15mm have
proven successful.

11As α describes the clockwork’s angle of rotation around the profile wheel in relation to the escapement wheel’s
angle of rotation, the starting and ending angles of the profile wheel must be −α.
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5 Application of the calculated curve to a real profile wheel using

parallel curves

It turned out that the curve calculated by the mathematical model cannot be applied directly
to a real profile wheel. A new curve would be desirable, the points of which are “shifted” in one
direction compared to the old curve, without the tangent angles changing: For each ´, ¶T on the
old curve should be equal to the tangent angle which occurs at the circular12 escape wheel pins’
point of contact with the curve.
The new curve must therefore have a tangent parallel to the old curve’s tangent for each ´,
the perpendicular distance of which corresponds to the escapement wheel pin radius. Such a
tangent can be calculated from parametric curves by calculating the tangent and then forming
the perpendicular vector scaled to the desired distance.

Tangent vector of a parametric curve f⃗(t) =

(
x(t)
y(t)

)

:

˙⃗
f =

(
ẋ
ẏ

)

(30)

perpendicular:

˙⃗
f§ =

(
−ẏ
ẋ

)

(31)

normalized and scaled by distance a:

v⃗a =
˙⃗
f§
∥
∥
∥
˙⃗
f§

∥
∥
∥

· a (32)

each point of f⃗ shifted by v⃗a:

f⃗a(t) = f⃗(t) + v⃗a (33)

ô f⃗a(t) =





x(t)− ẏ√
ẋ2+ẏ2

· a
y(t) + ẋ√

ẋ2+ẏ2
· a



 (34)

During extended research for this paper, it turned out that such curves – as their main property
already suggests – are called parallel curves[10].
The fact that these, together with round pins, are mostly equivalent to the mathematical model
of the punctiform pin with regard to the torque ratio function ¸ despite a change in the point of
contact can be explained most easily by the fact that parallel curves of the profile curve do not
cause any change in the path of the journal relative to the profile wheel. That means they do
not change ³(´) either, so −³′(´) also stays the same. As the physical approach also confirms
independently of the escapement geometry, this is exactly ¸(´), which is also parallel curve in-
variant.
Now one last problem to be treated theoretically remains open, which first is visualized in Fig-
ure 12. The peculiarity lies in the fact that the curve intersects itself, which may not appear to
be a problem at first: After all, the designer is free to choose only the points before and after the
intersection. However, the path of movement of the escapement wheel pin’s center would then
differ from the intended path. This would result in the real profile wheel deviating greatly from
the mathematical model, i. e. ¸(´) no longer applies to all ´ on the real profile wheel, which is
why such curves should be avoided. This deviation is indicated by the dashed arc in the figure.

12The escape wheel pivots are actually frustoconical rather than circular because this reduces friction by min-
imizing the contact area. However, in the two-dimensional projection, which is entirely sufficient for calculating
the curve, the escapement wheel pivots are circular.
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x

y

Figure 12: External elliptical curve and an
associated parallel curve, where singularities
occur due to strong curvature and large dis-
tances. In this example, they manifest near
the y-axis. If the curve is nevertheless used
on a profile wheel, the trajectory of the pin
deviates because it rolls off circularly at the
curve tip shown as a point.

The fact that singularities occur when a certain maximum of curvature or distance is exceeded
raises the question of the qualitative determination of this maximum: Under exactly what cir-
cumstances do discontinuities occur in the parallel curve?
To answer this question, it makes sense to think about special cases.
If one looks at a circle function with a certain radius and its parallel curve, you will notice that
there is a distance a, so that all points of this circular function are mapped onto a single one.
If one further increases the distance, a circle forms again, but it is “inverted” and drawn in the
opposite direction to the original circle function, because its points are opposite when viewed
from the center. This observation can be transferred to other continuous functions: If one ap-
proximates each point of the function by a circle, i. e. its curvature is determined, the direction
of the drawing changes abruptly at the point under consideration if the parallel curve distance
a falls below the initial curve’s curvature radius, and a singularity manifests itself in such a
change in direction. This means that such singularities, which are undesirable in practice, occur
precisely when the initial curve is curved in the direction of the parallel curve and its radius of
curvature is less than the distance between the parallel curves.
This condition can now be checked for mathematically by calculating the radius of curvature of
the initial curve. The definition of curvature can be derived from that of the radius of a circle.
This is given by the quotient of the total angle in radians13 and the arc length of the circle. For
sectors, the following applies in general:

r =
l

³
=

ds

d¹
(35)

Here, l denotes the arc length and ³ the sector angle. The same applies to infinitesimal arc
lengths ds and angles d¹.
Finally, one can apply this equation to functions by determining the change in length and angle
at a point in the function. The change in arc length can be easily calculated using the arc length
integral:

s =

∫
√

ẋ2 + ẏ2 dt (36)

ds

dt
=

(∫
√

ẋ2 + ẏ2 dt

)′

=
√

ẋ2 + ẏ2 (37)

The arctangent of the tangent angle can be used to find the change in angle:

d¹

dt
=

(

arctan

(
ẏ

ẋ

))′

=

(
ẏ
ẋ

)′

· ẋ2

ẋ2 + ẏ2
=
ẋÿ − ẏẍ

ẋ2 + ẏ2
(38)

13or the arc length of the unit circle
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Substituted into Equation 35:

r(t) =
ds
�dt
dθ
�dt

=

√

ẋ2 + ẏ2
3

ẋÿ − ẏẍ
(39)

This is the parametric function’s radius of curvature as a function of the parameter t, which only
leaves one with the task of examining maxima and minima of this function in the given interval
and, if necessary, correcting the output curve so that the radii of curvature are below the parallel
curve distance.

6 Measurement series to evaluate the calculated curve’s perfor-

mance

In order to check whether the mathematically optimized profile curves have better properties than
empirically determined ones, it makes sense – precisely because the movement is completely 3D
printable – to produce profile wheels with curves to be compared and to carry out a series of
measurements.

6.1 Procedure for recording the series of measurements

Following the selection of suitable test candidates, a special procedure generates measurement
data that is used to characterize the clockwork’s rate: The ticking of the clock can be used as
an indicator for the beginning of blocking phases, because this begins with an escapement wheel
pin being stopped abruptly. The said noise arises, which can then be recorded by microphone.
In practical terms, this means: One draws the smartphone, winds up the movement14 and starts
recording. As soon as it stops moving, the series of measurements is complete and the recording
stops. I set the initial state of the clockwork in such a way that the first click in the recording
occurred during the transition from the escapement into the second blocking phase (Figure 5d)15.
An audio file is now available that only contains a click sound at the beginning of each blocking
phase and can be statistically evaluated using analysis tools, including Audacity[11].
Even if the procedure for recording the series of measurements sounds uncomplicated in itself, in
practice there are difficulties: it is possible that the clockwork runs well with a certain orientation
in space, despite the profile wheel remaining unchanged, but after a slight change in orientation
no oscillation arises at all. The problem is the friction of the moving parts inside the clockwork,
which depends on many factors. Depending on how the movement is held, there is more or less
friction at different points in different states of the mechanism, presumably due to gravity. As
a result, the experiment cannot be reproduced very well. When measuring, I had to empirically
determine the optimal orientation of the movement in space.

6.2 Evaluation of the data

The arithmetic mean and the absolute mean deviation as well as the relative mean deviation can
be calculated from the beat durations. These values are listed in Table 1 in order to compare
the performance of the empirical approach’s profile wheels with the mathematically calculated
ones.
The first thing to notice is that the average beat durations are different; the calculated profile
wheel has a balance oscillation of lower frequency. This alone indicates that the escapement with
empirical profile wheel forces a balance oscillation frequency too high due to excessive force, or
that the escapement with calculated profile wheel forces a balance oscillation frequency too low
due to excessive friction; at least one profile wheel causes the balance wheel to oscillate at a

14The movement is wound up the same amount for each series of measurements.
15The duration of the first beat is therefore the time interval of the escapement’s transitioning from the second

blocking phase into the first.
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Table 1: statistical evaluation of the measurement data

E = empirical approach; M = mathematical approach

1. beat duration 2. beat duration period (both beat durations)

E M E M E M

average 0.24 s 0.28 s 0.26 s 0.31 s 0.51 s 0.60 s
mean deviation 0.02 s 0.02 s 0.03 s 0.02 s 0.03 s 0.02 s
relative deviation 6.87% 5.43% 10.60% 5.20% 6.17% 4.09%

frequency that is significantly different from its natural frequency.
The fact that the (relative) mean deviation of the calculated profile wheel is smaller suggests that
the calculated profile wheel provides a more regular beat rate, so it has already made the hoped-
for improvement in this respect. The most important findings from the extended data analysis
in Appendix B are that using the calculated profile wheel results in a longer, more regular and
less error-prone operation of the movement than the empirically determined profile wheel, which
disturbs the balance wheel’s oscillations more, so that the oscillation frequency is significantly
higher than the natural frequency of the balance wheel, but the oscillation is sustained over a
greater span of forces.

7 Outlook

The last approach in conjunction with parallel curves, is at least a theoretically satisfactory
solution to the curve calculation problem. The result also turns out to be satisfactory in practice,
as the series of measurements can confirm that the calculated curve ensures a clockwork’s rate
more regular; for further details on the series of measurements see also [6, pp. 12–15].
However, a theoretical aspect of this project is still unclear: The original torque ratio function
only corresponds exactly to the derivative of −³ if the parameters d and rH take special value
ranges. It is therefore apparently contradictory that the function turns out to be independent
of the two parameters after simplification. According to my current state of knowledge, this
circumstance is related to the fact that the trigonometric inverse functions, especially the arcsine
that occurs with the law of sines, actually have several solutions and the standard solutions do
not necessarily correspond to the correct angles within the value ranges mentioned. However,
while transforming, such detail is lost because I had considered inverse functions of functions to
cancel; though for example, arcsin(sin(x)) is not always equal to x.
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Appendix A Complete derivation

The addition theorems of the sine and cosine functions were of particular importance for the
simplification of the long expression. First, a small collection of formulae that proved to be
helpful for deriving the result:

sin(−x) = − sin(x); cos(−x) = cos(x) (40)

sin(x+ y) = sin(x) cos(y) + sin(y) cos(x) (41)

cos(x+ y) = cos(x) cos(y)− sin(y) sin(x) (42)

sin(x) = ±
√

1− cos(x)2; cos(x) = ±
√

1− sin(x)2 (43)

sin
(

arctan2
(y

x

))

= sgn(x)
y/x

√

(y/x)2 + 1
(44)

cos
(

arctan2
(y

x

))

= sgn(x)
1

√

(y/x)2 + 1
(45)

(x+ y)2 = x2 + y2 + 2xy; (x− y)2 = x2 + y2 − 2xy (46)

To save space, the following definition is given beforehand: q =
p′y
p′x

. Starting from Equation 17
you can proceed as follows:
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¸ =
rH
rP

· cos(¶T − ¶H)

cos
(

arcsin
(

d
rP

sin(´)
)

− ¶T + ¶H

)

=
rH
rP

· cos(¶T − ¶H)

cos
(

¶T −
(

arcsin
(

d
rP

sin(´)
)

+ ¶H
︸ ︷︷ ︸

δP

)) | 42, 40

=
rH
rP

· cos(¶T) cos(¶H) + sin(¶H) sin(¶T)

cos(¶T) cos(¶P) + sin(¶P) sin(¶T)
| 45, 44

=
rH
rP

·
����������sgn(p′x)

√

q2 + 1
−1

sgn(p′x)
√

q2 + 1
−1 · cos(¶H) + sin(¶H) · q

cos(¶P) + sin(¶P) · q

=
rH
rP

· cos(¶H) + q sin(¶H)

cos
(

arcsin
(

d
rP

sin(´)
)

+ ¶H

)

+ q sin(¶P)
| 42, simplify

=
rH
rP

· cos(¶H) + q sin(¶H)

cos
(

arcsin
(

d
rP

sin(´)
))

cos(¶H)− d
rP

sin(´) sin(¶H) + q sin(¶P)

| 43, simplify

=
rH
rP

· cos(¶H) + q sin(¶H)
√

1−
(

d
rP

sin(´)
)2

· cos(¶H)− d
rP

sin(´) sin(¶H) + q sin(¶P)

| analogously for sin(¶P)

=
rH
rP

· cos(¶H) + q sin(¶H)
√

1−
(

d
rP

sin(´)
)2

· (cos(¶H) + q sin(¶H)) +
d
rP

sin(´) · (q cos(¶H)− sin(¶H))

| extract rP from root

=
rH

��rP
· cos(¶H) + q sin(¶H)
√

r2P − d2 sin(´)2

��r
2
P

︸ ︷︷ ︸
w

· (cos(¶H) + q sin(¶H)) +
d

��rP
sin(´) · (q cos(¶H)− sin(¶H))

w =
√

r2H sin(´)2 + (d− rH cos(´))2 − d2 sin(´)2 | 43

=

√

r2H�������
− r2H cos(´)2���+ d2�������

+ r2H cos(´)2 − 2 · d · rH cos(´)���− d2 + d2 cos(´)2

| 46

=
√

(rH − d cos(´))2 = rH − d cos(´)

¸ =
rH · (cos(¶H) + q sin(¶H))

(rH − d cos(´)) · (cos(¶H) + q sin(¶H)) + d sin(´) · (q cos(¶H)− sin(¶H))

| factor q out

=
rH · (q sin(¶H) + cos(¶H))

q · ((rH − d cos(´)) · sin(¶H) + d sin(´) cos(¶H))
+ (rH − d cos(´)) · cos(¶H)− d sin(´) sin(¶H)

∣
∣
∣
∣

expand
(rH − d cos(´))

=
rH · (q sin(¶H) + cos(¶H))

q · (rH sin(¶H)− d cos(´) sin(¶H) + d sin(´) cos(¶H))
+ rH cos(¶H)− d cos(´) cos(¶H)− d sin(´) sin(¶H)

| 41, 42; ¶H = ³+ ´

=
rH · (q sin(¶H) + cos(¶H))

q · (rH sin(¶H)− d sin(³)) + rH cos(¶H)− d cos(³)
=
N

D

∣
∣
∣
∣
∣
∣

substitute q into nu-
merator and directly
expand by p′x

N =
rH
p′x

· ((d · ³′ · cos(³)
((((((((((((
− rH · (³′ + 1) · cos(¶H)) · sin(¶H)
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+ (−d · ³′ · sin(³)
((((((((((((
+ rH · (³′ + 1) · sin(¶H)) · cos(¶H))

∣
∣ factor out d · ³′

=
rH
p′x

· (d · ³′ · (cos(³) sin(¶H)− sin(³) cos(¶H))) | 41; ¶H = ³+ ´

=
rH
p′x

· d · ³′ · sin(´)

¸ =
rH · d · ³′ · sin(´)

p′x · (q · (rH sin(¶H)− d sin(³)) + rH cos(¶H)− d cos(³))
=
N

D

∣
∣
∣
∣
∣
∣
∣

substitute q into nu-
merator and multi-
ply by p′x conse-
quently

D = (d · ³′ · cos(³)− rH · (³′ + 1) · cos(¶H)) · (rH sin(¶H)− d sin(³))

+ (−d · ³′ · sin(³) + rH · (³′ + 1) · sin(¶H)) · (rH cos(¶H)− d cos(³))
∣
∣ factor ³′ out

= ³′ · (((((((((((
d cos(³) · rH sin(¶H)((((((((((− d cos(³) · d sin(³)

((((((((((((
− rH cos(¶H) · rH sin(¶H)(((((((((((

+ rH cos(¶H) · d sin(³)

(((((((((((
− d sin(³) · rH cos(¶H)((((((((((

+ d sin(³) · d cos(³)

((((((((((((
+ rH sin(¶H) · rH cos(¶H)((((((((((((

− rH sin(¶H) · d cos(³))

((((((((((((
− rH cos(¶H) · rH sin(¶H) + rH cos(¶H) · d sin(³)

((((((((((((
+ rH sin(¶H) · rH cos(¶H)− rH sin(¶H) · d cos(³) | 41

= −rH · d sin(´) | substitute D back into ¸

¸ =
���rH · d · ³′ ·����sin(´)

−���rH · d ·����sin(´)
= −³′
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Appendix B Extended data analysis
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Figure 13: beat duration at the empirical profile wheel

0 5 10 15 20 25 30 35 40 45 50
0.2

0.25

0.3

0.35

0.4

0.45

time [s]

b
ea

t
du

ra
ti

on
[s

] regression, slope: −5× 10−4

mean

Figure 14: beat duration at the calculated profile wheel

Figure 13 and Figure 14 show the time course of the beat durations together with their linear
regression as an overall trend: While the empirical profile wheel shows a positive increase in the
average beat duration, that of the calculated profile wheel shows a negative slope. These overall
tendencies of the beat durations can be justified with the hypotheses presented above, according
to which the empirical profile wheel forces a higher frequency with high spring force, whereas the
calculated profile wheel with high spring force initially provides higher friction and thus slows
down the balance wheel.
The diagrams also show that the calculated profile wheel, lasting 49.78 s, runs longer at a stretch
than the empirically determined one, which maintains the balance oscillation for 46.57 s; how-
ever, this is mainly due to the higher oscillation frequency; with 184 beats compared to 168, the
empirically determined profile wheel transfers more energy to the balance wheel over the entire
running time16. Another indication of the calculated profile wheel’s higher performance is the
slope value of the regression line: Since | − 5 × 10−4| < |9 × 10−4|, the average period is less of
dependent on time, so that I see my hopes of the curve calculation regarding higher accuracy
fulfilled. So the calculated profile wheel appears to have better accuracy at the cost of slightly
less force tolerance or “reliability”, in contrast to the empirical profile wheel, which runs rather
erratically but over a greater range of forces.
The time interval between 20 s and 25 s exhibits even more interesting behaviour of the calculated
profile wheel’s beat duration, as the continuously alternating beat durations – as expected – are
clearly visible. From this it can be concluded that the profile wheel is not attached in a neutral
position. If one counts the beats up to the corresponding digits, one comes to the conclusion

16Because during each beat, the mainspring relaxes further by a fixed angle and the more the spring has relaxed,
the more energy it has transferred.
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that the beat consisting of the first blocking phase and the second drive phase17 takes longer
than the other. If one assumes – as before – that the longer duration is caused by a longer
acceleration path of the balance wheel, it can be reasoned that the profile wheel in Figure 5 is
twisted clockwise relative to the non-deflected orientation.
Finally, I would like to point out that the systematically alternating beat durations in the empir-
ical profile wheel hardly appear in the series of measurements, because the beat durations change
continuously without exhibiting the previously described pattern of alternating durations; only
irregular fluctuations can be seen in the diagram. This is another aspect that shows that the
calculated profile wheel causes the clockwork’s rate to be more regular.

17The clicking is emitted from the escapement at the beginning of the second blocking phase (Figure 5d) .
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